[課程簡介]:人工智能(AI)是新一輪科技革命和產業(yè)變革的核心驅動力,將深刻改變人類社會生活,改變世界,對于實現(xiàn)社會生產力新躍升,提高綜合國力和國際競爭力具有重要意義。知識圖譜是人工智能技術的重要組成部分, 是AI分支符號主義在新時期主要的落地技術方式。 ...
【時間地點】 | 2021年5月28-31日 成都 (27日報到) |
|
【培訓講師】 | 張老師 | |
【參加對象】 | 1、政府、企業(yè)、學校IT相關技術人員;高校相關專業(yè)碩士、博士研究生。2、企業(yè)技術總監(jiān)及相關管理人員。3、人工智能與知識圖譜系統(tǒng)架構師、設計與編程人員。4、對知識圖譜技術感興趣的其他人員。 | |
【參加費用】 | ¥7800元/人 (含培訓、教材、午餐、場地、證書、學習用品費等)。需要住宿學員請?zhí)崆巴ㄖ,可統(tǒng)一安排,費用自理。 | |
【會務組織】 | 森濤培訓網(wwwb1393.com).廣州三策企業(yè)管理咨詢有限公司 | |
【咨詢電話】 | 020-34071250;020-34071978(提前報名可享受更多優(yōu)惠) | |
【聯(lián) 系 人】 | 龐先生,鄧小姐;13378458028、18924110388(均可加微信) | |
【在線 QQ 】 | 568499978 | 課綱下載 |
【溫馨提示】 | 本課程可引進到企業(yè)內部培訓,歡迎來電預約! |
課程介紹
人工智能(AI)是新一輪科技革命和產業(yè)變革的核心驅動力,將深刻改變人類社會生活,改變世界,對于實現(xiàn)社會生產力新躍升,提高綜合國力和國際競爭力具有重要意義。知識圖譜是人工智能技術的重要組成部分, 是AI分支符號主義在新時期主要的落地技術方式。它以其強大的語義處理能力和開放組織能力,為互聯(lián)網時代的知識化組織和智能應用奠定了基礎。自2012年谷歌在提出知識圖譜概念以來,國內外大規(guī)模知識圖譜的研究不斷深入,并廣泛應用于知識融合、語義搜索和推薦、問答和對話系統(tǒng)、大數據分析與決策等方面,應用領域覆蓋金融、制造、政府、電信、電商、客服、零售、娛樂、醫(yī)療、農業(yè)、出版、保險、知識服務、教育等行業(yè)。
為了貫徹落實國務院印發(fā)的“新一代人工智能發(fā)展規(guī)劃”精神,推廣人工智能與知識圖譜技術的應用,特舉辦 “人工智能-知識圖譜核心技術與應用培訓班”。
培訓方式
本培訓班重視技術基礎,強調實際應用,采用技術原理與實際應用相結合的方式進行教學。 通過展示教師的實際科研成果,講述人工智能與知識圖譜的技術原理與應用系統(tǒng)開發(fā)方法、知識圖譜系統(tǒng)開發(fā)工具使用方法。使學員掌握知識圖譜基礎與專門知識,獲得較強的知識圖譜應用系統(tǒng)的分析、設計、實現(xiàn)能力。
參加培訓的學員需帶筆記本電腦,配置為: Windows 10(或windows 7)操作系統(tǒng)、jdk-8u191-windows-x64、8G以上內存、256G以上硬盤。
實驗軟件為: 圖數據庫: neo4j 3.5社區(qū)版;
深度學習開發(fā)環(huán)境:Anaconda Anaconda 3-5.3(含Tensorflow與keras)。
培訓內容
第一天
第一講 人工智能概述
1.1 人工智能(AI)概念
1.2 AI研究的主要技術問題
1.3 AI的主要學派
1.4 AI十大應用案例
第二講 知識圖譜概述
2.1 知識圖譜(KG)概念
2.2 知識圖譜的起源與發(fā)展
2.3 典型知識圖譜項目簡介
2.4 知識圖譜技術概述
2.5 知識圖譜典型應用
第三講 知識表示
3.1 基于符號主義的知識表示概述
3.1.1 謂詞邏輯表示法
3.1.2 產生式系統(tǒng)表示法
3.1.3 語義網絡表示法
3.2 知識圖譜的知識表示
3.2.1 本體論概念
3.2.2 RDF和RDFS
3.2.3. OWL和OWL2
3.3.4 Json與Json-LD
3.3.5 RDFa、HTML5 、MicroData
3.3.6 SPARQL查詢語言
第二天
第四講 知識圖譜核心基礎技術(一)
神經網絡與深度學習
4.1 神經網絡基本原理
4.2 神經網絡應用舉例
4.3 深度學習概述
4.4主流深度學習框架
4.4.1 TesorFlow / Keras(安裝與運行)
4.4.2 Caffe
4.5 卷積神經網絡(CNN)
4.5.1 CNN簡介
4.5.2 CNN關鍵技術: 局部感知、卷積、池化、CNN訓練
4.5.3 典型卷積神經網絡結構
4.5.4 深度殘差網絡
4.5.5 案例:利用CNN進行時裝識別
4.5.6 案例:利用CNN進行手寫數字識別
上機實踐:基于卷積神經網絡的手寫體數字識別
第五講 知識圖譜核心基礎技術(二)
基于深度學習的自然語言處理
5.1 循環(huán)神經網絡(RNN)概述
5.2 基本RNN
5.3 長短時記憶模型(LSTM)
5.4 門控循環(huán)單元(GRU)
5.5 基于TensorFlow的自然語言處理
5.5.2 自然語言處理處理概述
5.5.1 文本向量化(vectorize)
5.5.1.1 one-hot編碼
5.5.1.2詞嵌入(word embedding)概念
5.5.1.3詞嵌入(word embedding)主要算法
5.5.1.4 TensorFlow/Keras的嵌入層實現(xiàn)
上機實踐:基于循環(huán)神經網絡的情感識別
第三天
第六講 知識抽取與融合
6.1 知識抽取基本方法
6.1.1 實體識別方法
6.1.2 關系抽取方法
6.1.3 事件抽取方法
6.2 面向結構化數據的知識抽取
6.2.1 D2RQ
6.2.2 R2RML
6.3 面向半結構化數據的知識抽取
6.3.1 基于正則表達式的方法
6.3.2 基于包裝器的方法
6.4. 面向非結構化數據的知識抽取
6.4.1 基于規(guī)則的實體識別
6.4.2 基于深度學習的實體識別
6.4.3 基于模板的關系抽取
6.4.4 基于深度學習的關系抽取
6.5 實體消歧與鏈接
6.5.1實體消歧
6.5.2 實體鏈接
6.6 知識融合
6.6.1 框架匹配
6.6.2 實體對齊
6.6.3 沖突檢測與消解
第七講 存儲與檢索
7.1 知識圖譜的存儲與檢索簡介
7.2 知識圖譜的存儲
7.2.1 基于表結構的存儲
7.2.2 基于圖結構的存儲
7.3 大規(guī)模知識圖譜存儲解決方案
7.4 屬性圖數據庫 NEO4J
7.5 知識圖譜的檢索
上機實踐:利用NEO4J進行知識圖譜存儲與檢索
第八講 知識圖譜案例
8.1 金融風險防范知識圖譜構建
8.2 知識問答系統(tǒng)構建
主講教授
張老師,博士畢業(yè)于西安交通大學,現(xiàn)為某大學計算機學院2級教授,博士生導師,陜西省XXX專家組專家。曾任陜西省信息化專家組專家、陜西省制造業(yè)信息化專家組專家、中國計算機學會服務計算專委會委員、信息系統(tǒng)專委會委員,計算機學院副院長、計算機科學與技術學科帶頭人。主持完成科研項目30項(其中國家863課題6項);參編出版教材5部。作為第二作者參編了國家95規(guī)劃教材《人工智能基礎》(電子工業(yè)出版社,2000年) 。曾獲省部級科技進步獎8項,其中“神經網絡專家系統(tǒng)及其應用”獲機械工業(yè)部科技進步三等獎(1996)。累計培養(yǎng)已畢業(yè)博士研究生24人,碩士研究生132人。
1985年以來,主要從事人工智能、因特信息網方面的教學與研究,進行過多個實用人工智能系統(tǒng)、網絡與信息系統(tǒng)的規(guī)劃、設計與開發(fā)。2010年以來,主要從事人工智能、云計算、大數據與深度學習方面的研究與教學。
頒發(fā)證書
參加相關培訓并通過考試的學員,可以獲得:
1.工業(yè)和信息化部全國網絡與信息技術考試管理中心頒發(fā)的《人工智能職業(yè)技能證書》(等級高級)。該證書可作為專業(yè)技術人員職業(yè)能力考核的證明,以及專業(yè)技術人員崗位聘用、任職、定級和晉升職務的重要依據。
注:請學員帶二寸彩照2張(背面注明姓名)、身份證復印件一張。